Coupled Fixed Point Theorems in Partially Ordered Cone Metric Spaces
نویسندگان
چکیده
This paper is concerned with mixed monotone mappings in partially ordered cone metric spaces. We establish several fixed point theorems, which generalize and complement some known results. Especially, even in a partially ordered metric space, our main results are generalizations of the fixed point theorems due to Bhaskar and Lakshmikantham [T. Grana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. TMA 65 (2006) 1379–1393].
منابع مشابه
Coupled coincidence point in ordered cone metric spaces with examples in game theory
In this paper, we prove some coupled coincidence point theorems for mappings with the mixed monotone property and obtain the uniqueness of this coincidence point. Then we providing useful examples in Nash equilibrium.
متن کاملCoupled fixed point on ordered cone metric spaces with application in integral equations
Our theorems are on ordered cone metric spaces which are not necessarily normal. In the end, we describe the application of the main results in the integral equation.Although Du in [W. S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Analysis, 72(2010) 2259-2261.], showed that the fixed point results in the setting of cone...
متن کاملFixed point theorems under c-distance in ordered cone metric space
Recently, Cho et al. [Y. J. Cho, R. Saadati, S. H. Wang, Common xed point theorems on generalized distance in ordered cone metric spaces, Comput. Math. Appl. 61 (2011) 1254-1260] dened the concept of the c-distance in a cone metric space and proved some xed point theorems on c-distance. In this paper, we prove some new xed point and common xed point theorems by using the distance in ordered con...
متن کاملSome Fixed Point Theorems in Generalized Metric Spaces Endowed with Vector-valued Metrics and Application in Linear and Nonlinear Matrix Equations
Let $mathcal{X}$ be a partially ordered set and $d$ be a generalized metric on $mathcal{X}$. We obtain some results in coupled and coupled coincidence of $g$-monotone functions on $mathcal{X}$, where $g$ is a function from $mathcal{X}$ into itself. Moreover, we show that a nonexpansive mapping on a partially ordered Hilbert space has a fixed point lying in the unit ball of the Hilbert space. ...
متن کاملFixed point theorems on generalized $c$-distance in ordered cone $b$-metric spaces
In this paper, we introduce a concept of a generalized $c$-distance in ordered cone $b$-metric spaces and, by using the concept, we prove some fixed point theorems in ordered cone $b$-metric spaces. Our results generalize the corresponding results obtained by Y. J. Cho, R. Saadati, Shenghua Wang (Y. J. Cho, R. Saadati, Shenghua Wang, Common fixed point heorems on generalized distance in ordere...
متن کاملCoupled coincidence point theorems for maps under a new invariant set in ordered cone metric spaces
In this paper, we prove some coupled coincidence point theorems for mappings satisfying generalized contractive conditions under a new invariant set in ordered cone metric spaces. In fact, we obtain sufficient conditions for existence of coupled coincidence points in the setting of cone metric spaces. Some examples are provided to verify the effectiveness and applicability of our results.
متن کامل